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To date, the complexities of polishing has made is difficult to
scientifically design, optimize a process for a given material
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Schematic model of the parameters that affect roughness during
polishing
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Polishing was conducted using the Convergent Polishing
Method (ceria or silica slurry on various glasses using a
polyurathane pad)

CISRO polisher

These polishing systems offer great control over process parameters (temperature,
humidity, PSD, rogue particles, pad treatment etc.) & diagnostics allowing for very
controlled, repeatable polishing experiments
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Our measurements show that Ce penetration is not due to
diffusion & K penetration is consistent with diffusion

[Ce] profile on polished fused silica

surface as fn of polishing velocity

[K] profile on polished fused silica
surface as fn of polishing velocity
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Ce penetration increases with increase in
removal rate; suggestive of a surface
reactivity mechanism; Ce is the active
component in material removal during

polishing

K penetration decreases with increase in
removal rate; consistent with diffusion

IMeasured by SIMS (note Si 2x1022 atom/cm?3)
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[Ce], increases with polishing removal rate & is weakly
dependent on other polishing parameters

[Ce] of polished surface layer for

Correlation between [Ce], and

variety of polishing conditions
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T. Suratwala et. al., J. Am. Cer. Soc 98(8) (2015) 2396
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The penetration of Ce into silica surface during polishing is
proposed to be a competition of hydrolysis reactions

Mechanism
1) Removal rate increases

Condensation

2) Interface temperature increases

—ci — — o — 3) Arrhenius increaseto r
=ol- - = = OI-0- = +
Si-OH + HO-Ce & > =3i-O-Ce H,0 4) Greater Ce surface deposition

Silica Hydrolysis
ESi-*-Si-O-Ce-O-Ce = + H,O0-> = Si-OH + HO-Si-O-Ce-O-Ce =

Ceria Hydrolysis

ESi-O-Si-O-Ce-%}-CeE + H,O0 2 = Si-O-Si-O-Ce-OH + HO-Ce =

r =Ceria Hydrolysis rate/ Silica Hydrolysis rate
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Schematic Model of the parameters that affect roughness during
polishing
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Nanoscratching at ultralow loads offers exploring mechanical
properties of Bielby layer and particle removal function

Load vs Corresponding Depth on Fused Silica
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1This study (2014); 2Thongoom J. Mat. Sci 40 (2005);3Miller, Optics Letters 35(16) (2006); “Lawn,
Fracture of Brittle Solids (1993);5Suratwala, JNCS 354 (2008)
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Using a stiff AFM tip, nanoscratching has proven a viable
method to explore the mechanical properties of Beilby layer

Beilby Layer SEM of a AFM

Bulk diamond tip

Nanoscratching Method

o Standard AFM tip (Si;

0.1-1 N/m; ~10 nm
& v“m* radius) replaced with
Bielby Layer Stiff AFM tip
OH o (Diamond; 42 N/m;
OH Ce

150 nm radius)

7.00kV 5.6mm x25.0k SE

» Nanoscratches
created at loads
0—-170 uN

~70 nm

8rms
>
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Fused silica and BK7 show little load dependence on permanent
deformation; changes in Bielby layer of fused silica influences

depth

AFM images of nanoscratches on

different surfaces at various loads
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Annealing induced relaxation! supports that nanoscratches on
fused silica are largely due to densification

Nanoscratches

before & after annealing
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1 Using technique described by Yoshida .et. al., J. Mater. Res., Vol. 20, No. 12, Dec 2005
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The removal volume was determined from multi-pass
nanoscratching to account densification effects

LHG-8 phosphate glass: scratches at 110 uN

5 10 10

Onm

N. Shen et. al., J. Am. Cer. Soc (2016) 1-8
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A detailed description of the removal function has been
determined for various glasses aiding to the prediction of
roughness

Determined removal function for single

particle on various glasses
" « Removal occurs over two

| oseo sice. | regimes during polishing
] Borosilicate glass (BK7) (mOIeCUIar and pIaStIC)
10t 4 Phosphate glass (LHG-8)

e Fused silica and BK7 have
similar removal functions

« Removal function for
phosphate glass is higher

Depth (nm) or
Fractional Distribution*100

« Combining removal
function with load/particle
distribution allows for
predicting roughness

10° 10°® 107 10° 10° 10" 10° 10
Load/particle (N)
N. Shen et. al., J. Am. Cer. Soc (2016) 1-8
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Schematic Model of the parameters that affect roughness during
polishing

Ensemble Hertzian Mult-Gap Beilby Layer Mechanical

Properties vs Depth
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Key polishing variables were measured to test and validate the
EHMG polishing model

Key polishing variables:

Plot of measured removal rate &

roughness on Fused Silica 1. Slurry PSD

28 ——T T 11— 2. Slurry Concentration

2.6 - N6 B Slurry Series (S)

2.4—- M V¥ Slurry Concentration Series (N) 3. Pad TOpOIOgy

N ® Pad Type Series (P)

= 2.2 - AT3 v N4 A pad Topology Series (T) 4- Pad Type
< 2.0- =
E:L 1.8 |
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§ 14—_ us3 —_/ % L A AT e '
= 1,2__ w N2 //, , ,:.: Seway ‘,J“h
3 1.0+ : 7 i e A
g 0.8
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0.0_ Tl a

z T z T z T z T z T z
0.0 0.2 0.4 0.6 0.8 1.0 1.2
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High roughness Low roughness, Low roughness
High removal rate Low removal rate High removal rate
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Pad topology during polishing strongly influences
removal rate

MHN Pad Surface Topology (Confocal Microscope
Images) with various surface treatments Pad Height Histograms

T1: New MHN T2: Used MHN 1005 T
UM :
" 10"
c ]
i) ]
Q
SR New MHN
¥ L 1075 (T1 3
‘ g ]
- < ] Used MHN
0.31 um/hr [ § 10°4
g . ] 45 min DC
T3:45 min DC - © (T3)
o (100 200 300 f 400 500
1000.0um Relative Heightf(um)

2.10 um/hr ;
1400 pm x 1000 pm

« Tall pad asperities (100’s um) are removed with diamond conditioning pad treatment
« Removal rate increased from 0.08 um/hr to 2.10 um/hr; 26x increase
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Slurry’s PSD* strongly correlates with workpiece roughness and
removal rate

Measured PSD of ceria slurries Exponent constant in PSD of slurry

T vs RMS roughness of polished surface S
% o Accuplane 1
] @ o E92 Stahilized Hastilite 10 T . . . . . .
104 | A E134 Unstabilized Hastilite .
E E133 Ultra-sol 3005
] E135 Ultra-sol 3030 §
z ] _;;
£ 105 O .0
8 3 ) 10 E E
O i ]
c
5 1074 %
= S _ A 80
= d =0.008 m
10° | % 3=0.20 nm
o
Particle size, d (um) @ 102

00 02 04 06 08 10 12 14 16
\ RMS roughness (AFM 50 um), & (nm)
1 The slope of the slurry’s PSD

1 quantitatively scales with the rms
roughness

The tail end of each slurry follows a
single exponential distribution

T. Suratwala et. al., J. Am. Cer. Soc 97(1) (2014) 81

*Particle size distribution
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EHMG (Esemble Hertzian Multi-Gap) polishing model accounts
for both slurry PSD & pad topology to determine RR and
roughness

EHMG Model Setup Stress on each asperity (o))

h, —h

p

Gap for each asperity of

stress (o)

Pad (E,, v,) , .
—7 Load on each particle (Hertzian Contact)

Pi’ G, \
Workpiece (E,, v,) P(I‘ = §Eefr \/r(2r )3

Load Balance on each asperity

o, :NbZF(r)P(r,gi)dr

Pad (E,, v,) Interface gap (g,) for each asperity is
determined by asperity stress (o;) and particle
size distribution F(r) over whole workpiece

Lawrence Livermore National Laboratory N A‘ ..o 19
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Load/particle distribution calculated using EHMG model,
combined with measured removal function, gives the removal
amount for each slurry particle

Single particle removal function &

calculated load/particle distribution

10% 5

3 -Fused Silica

i Borosilicate glass (BK7)
10" - Phosphate glass (LHG-8)

Unstabilized E

ﬂime

Stabilized
Hastilite

100'5
1 colloida
{ Silica or

10" {4 NanoArc

Depth (nm) or
Fractional Distribution*100

107 =

109 10y g . -5 10

Load/particle (N)

10°

This can be now used to calculate both removal rate and roughness during polishing
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EHMG model compared with experiments expands our insight to
the diverse factors affecting material removal rate

Experiment

EHMG Model

Measured removal rate & EHMG model Comparison

Ceria Slurry PSD
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(F,(d,)2a,)+ f,.(d,)(2a,))

* Widening PSD

increases load/particle
& fraction of removal
by plastic removal (f))

* Increasing slurry conc

increases active
particles density (Nf,)
and fraction of load
carried by particle (f,)

* Increasing pad flatness

increases fraction of
pad area making
contact (f,)

* Change in glass type

change removal depth
by plastic removal (d,)
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EHMG model also simultaneously simulates trends in observed

AFM roughness over a variety of polishing parameters

Measured

EHMG Model

Ultra-Sol 8§27

e e e S S

Stabilized Hastilite

Unstabilized Hastilite

Measured

EHMG Model

Fused Silica

Borosilicate Glass

Lawrence Livermore National Laboratory
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Schematic Model of the parameters that affect roughness during
polishing

Ensemble Hertzian Mult-Gap Beilby Layer Mechanical

Properties vs Depth

(EHMG) Model

PAl Redeposition

Workpiece

Bulk (E;, vy) Removal function

(Plastic, Chemical,
dissolution)

Slurry Stability &
Interface Interactions

Particle Size
Distribution

Particle Composition
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Pad Roughness

Pad Mechanical Prop.
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The ceria concentration variation with polishing rate can be
predicted using temperature dependent hydrolysis ratio (r)

Measured vs Calculated [Ce], using

temperature dependent hydrolysis ratio  Proposed Mechanism

107 ] - As removal rate increase, there is
= an increase interface temperature
£, | |
51075 - The resulting temperature rise
& ' causes a Arrhenius change to
80 ] hydrolysis ratio (r) of Si-O and Ce-O
o ®m V: Velocity Series 3
8 A P: Pad Series ]
= v S:Slurry Series - - Increase in r results in more Ce

1017 ® H:pH Sgrles_ i o

—— Hydrolyis ratio Model | 3 deposition to the surface
10°] a ] « Best fit activation energy (E) of 10
00 05 10 15 20 25 30 kcal/mole is consistent with
Polishing Removal Rate (dh/dt) (um/hr) literature values of Si-O-Si
hydrolysis*
—-E
E=10 kcal/mole S S dh
=80 Co =2 (T) = e *Tlar)
*Cypryk, Organometallics 21 (2002) 2165

ratwala et. al. J. Am. Cer. Soc. (5/2015) G
Lawrence Livermore National Laboratory N A‘S"‘%\ 25
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Aggressive DC treatment also flattened the pad over longer
spatial scale lengths

PAD Surface lineouts

ith & without DC treat t
Surface Topology for 45 min DC MHN pad (T3) WIth & withou reatmen

1T3 Lineout 1

& 1.

3 T3 Lineout 2
N

d—

1200.0 pm
1000.0
800.0
600.0
4000
2000

0.0

e

5 ]
I 1000-T1Lineout 1
m -

E 800 -
<
(D)
nd

600'Tl Lineout 2 7]

Patch measured
on previous slide

10 mm

DC= diamond conditioning (mm)
Distance (mm

. . "‘|
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EHMG (Esemble Hertzian Multi-Gap) polishing model accounts
for both slurry PSD & pad topology to determine RR and
roughness

EHMG Model Setup e Key Inputs: Slurry PSD & Pad Topology

P,,O » Using pad height histograms:

v  Pad asperities compress leading to
single value gap of pad (g,) based
on load balance

* Fraction of pad area making contact
is calculated

Pad (E,, v,)

P o  [Each asperity compresses by height (h;)
s 8 resulting in stress (o))

Workpiece (E,, v,)

* Using slurry PSD at each asperity land—
workpiece interface, slurry particles are
loaded with a unique gap (g;) following
load balance

Pad (E,, v,) s va)  Load/particle distribution is calculated

from summing all pad asperities

T. Suratwala et. al., J. Am. Cer. Soc (2016) accepted

. . ( "‘I
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The EHMG polishing model is used to expand key parameters
affecting material removal rate

Macroscopic Preston’s Equation

dh

— =Kk, o,V,

dt
Preston’s Applied Relative
Constant Pressure  Velocity

Summation of
removal for each
particle either by
molecular
removal or by
plastic removal

Revised Microscopic Level Preston’s Equation

from EHMG model

Plastic Removal

Molecular Removal

NN 11V, (1,(0,)(28,) 4 (0, ) (2a,)

AR 1 X

Particle # Fraction Fraction Fraction Fraction  Removal Contact

Density of pad of appliedActive removal by depth diameter
(#/area) area load on particles molecular

making particles mechanism

contact

Lawrence Livermore National Laboratory
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Combining all these measurements, a structural polishing model
at particle-workpiece interface has been proposed

B Al
\ {1
v ) ¥
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— T T 3.8 nm
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. 4 - - L] -, 2. o -1 i oo iy
= : » " . - N e
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'. .| dh_ 13 nm/min

0o 2
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Both initiation load and multi-scratching at same location using
AFM tip reveal insight to the fundamental removal function
during ‘plastic’ type polishing

Determination of critical load for Effect of multi-scratch on scratch
plastic deformation depth at 110 uN on various glasses
”_II_ I I I I ’g 55 T T T T T T T T T T

< 1.0 —=—Fused Silica (S1) ™ = 1 — 1
2 —e— Borosilicate (B1) g 5'0__ : 'lzuseg :!:!ca(:;) ]
g —4— Phosphate (P1) 3 4-5‘_ . FEZEd s:l:zaiéss; ]
g B 4.0 4 ® PBorosilicate (B1)| |
© R B Phosphate (P1) | 1
o g 351 phat .
@ 2 304 -
8 0.5 - < ] ]
= 2 25 } .
o © ] |
z 5 207 T
3 g 154 7 i
S @ 107 ; ' .
o > |

0.0 - i "8 05—_ ; i _

T ororrrr o = 0.0 T T T T T T
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Comparison of nanoscratching on different materials
(function of # of passes & environment)

Nanoscratch cross sections on various substrates
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